Source code for electric_emission_cost.emissions

"""Functions to calculate emissions from electricity consumption data."""

import pint
import datetime
import calendar
import cvxpy as cp
import numpy as np
import pandas as pd
import pyomo.environ as pyo

from .units import u
from . import utils as ut

HOUR_VARNAME = "hour"
DAY_VARNAME = "day"
MONTH_VARNAME = "month"
DT_VARNAME = "DateTime"
DT_LOCAL_VARNAME = "datetime_local"
EI_VARNAME = "co2_eq_kg_per_MWh"


[docs]def calculate_grid_emissions( carbon_intensity, consumption_data, emissions_units=u.kg / u.MWh, consumption_units=u.kW, resolution="15m", model=None, varstr="", ): """Calculates the emissions for the given consumption information as a cvxpy object carbon intensity of electricity generation structure as a DataFrame. Parameters ---------- carbon_intensity : array numpy array with kg of CO2 per kWh consumption_data : numpy.Array, cvxpy.Variable, or pyomo.environ.Var Baseline electrical or gas usage data as a Pyomo Var emissions_units : pint.Unit Units for the emissions data. Default is kg / MWh consumption_units : pint.Unit Units for the electricity consumption data. Default is kW resolution : str granularity of each timestep in string form with default value of "15m" model : pyomo.Model The model object associated with the problem. Only used in the case of Pyomo, so `None` by default. varstr : str Name of the variable to be created if using a Pyomo `model` Returns ------- (pint.Quantity, cvxpy.Expression, or pyomo.environ.Var), pyomo.Model tuple of pyomo Var representing emissions in kg of CO2 for the given `consumption_data` and `carbon_intensity` and the accompanying model object. The `model` object is only used for Pyomo, so by default it is `None` """ # get the emission factor units if they were provided as pint.Quantity n_per_hour = int(60 / ut.get_freq_binsize_minutes(resolution)) if isinstance(carbon_intensity, pint.Quantity): emissions_units = carbon_intensity.units carbon_intensity = carbon_intensity.magnitude if isinstance(consumption_data, np.ndarray): total_emissions = ( np.sum(consumption_data * carbon_intensity) * consumption_units * emissions_units * u.hour / n_per_hour ) return total_emissions.to(u.kg), None elif isinstance(consumption_data, (cp.Expression, pyo.Var, pyo.Param)): conversion_factor = ( (1 * consumption_units * emissions_units * u.hour).to(u.kg).magnitude ) emissions_timeseries, model = ut.multiply( consumption_data, carbon_intensity, model=model, varstr=varstr + "_multiply" ) total_emissions, model = ut.sum( emissions_timeseries, model=model, varstr=varstr + "_sum" ) return total_emissions * conversion_factor / n_per_hour, model else: raise ValueError( "consumption_data must be of type numpy.ndarray, " "cvxpy.Expression, or pyomo.environ.Var" )
[docs]def get_carbon_intensity( start_dt, end_dt, emissions_data, emissions_units=u.kg / u.MWh, resolution="15m", ei_varname=EI_VARNAME, ): """Computes the emissions (as kilograms of CO2) of a horizon of data Parameters ---------- start_dt : datetime.datetime or numpy.datetime64 Start datetime to gather rate information. end_dt : datetime.datetime or numpy.datetime64 End datetime to gather rate information. This `end_dt` is excluded to be consistent with Python syntax. emissions_data : DataFrame Electric grid emissions information. Only one of `datetime_local` and `month`/`day`/`hour` are required. ================== ================================================== datetime_local local datetime to estimate the marginal emissions month month for which the emissions data was averaged day day for which the emissions data was averaged hour hour for which the emissions data was averaged co2_eq_kg_per_MWh emissions in kg of CO2 per MWh of grid electricity ================== ================================================== emissions_units : pint.Unit Units for the emissions data. Default is kg / MWh resolution : str a string of the form `[int][str]` giving the temporal resolution on which charges are assessed. The `str` portion corresponds to numpy timedelta64 types. For example '15m' specifying demand charges that are applied to 15-minute intervals of electricity consumption ei_varname : str column name for the Scope 2 emissions factor. Default is `EI_VARNAME="co2_eq_kg_per_MWh"` Returns ------- pint.Quantity emissions from `start_dt` to `end_dt` in kg CO2 / kWh """ # Get the number of timesteps in a day (according to charge resolution) res_binsize_minutes = ut.get_freq_binsize_minutes(resolution) n_per_hour = int(60 / res_binsize_minutes) if isinstance(start_dt, datetime.datetime) or isinstance(end_dt, datetime.datetime): ntsteps = int( (end_dt - start_dt) / datetime.timedelta(minutes=res_binsize_minutes) ) # make end_dt non-inclusive to align with Python syntax end_dt = end_dt - datetime.timedelta(minutes=res_binsize_minutes) else: ntsteps = int((end_dt - start_dt) / np.timedelta64(res_binsize_minutes, "m")) start_dt = start_dt.astype(datetime.datetime) # make end_dt non-inclusive to align with Python syntax end_dt = (end_dt - np.timedelta64(res_binsize_minutes, "m")).astype( datetime.datetime ) start_day = start_dt.day start_month = start_dt.month start_year = start_dt.year start_hour = start_dt.hour start_minute = start_dt.minute end_day = end_dt.day end_month = end_dt.month end_hour = end_dt.hour # add date variables to emissions data no_day_var = False try: emissions_data[DT_LOCAL_VARNAME] = pd.to_datetime( emissions_data[DT_LOCAL_VARNAME] ) emissions_data[MONTH_VARNAME] = emissions_data.datetime_local.dt.month emissions_data[DAY_VARNAME] = emissions_data.datetime_local.dt.day emissions_data[HOUR_VARNAME] = emissions_data.datetime_local.dt.hour except KeyError: # if datetime_local is not found then assume month and hour # are already accounted for but day is not for backwards compatability if DAY_VARNAME not in emissions_data.columns: no_day_var = True # adjust carbon_intensity to match the index of net_demand_kW # this gets the number of timesteps to include the first hour's carbon intensity # since it is not necessarily a full hour (which corresponds to 4 timesteps) num_first_min = start_minute % res_binsize_minutes if num_first_min == 0: num_first_min = n_per_hour if no_day_var: start_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[MONTH_VARNAME] == start_month) ] .idxmax() .iloc[0] ) else: start_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[DAY_VARNAME] == start_day) & (emissions_data[MONTH_VARNAME] == start_month) ] .idxmax() .iloc[0] ) carbon_intensity_adj = np.full( (num_first_min, 1), emissions_data.iloc[start_index][ei_varname] ) rollover = ( end_month != start_month ) # should we extend this for multiple months/years? if rollover: old_end_day = end_day end_day = calendar.monthrange(start_year, start_month)[1] old_end_hour = end_hour end_hour = 24 # increment index since first hour was included start_index += 1 start_hour += 1 for i in range(end_day + 1 - start_day): if i == int(end_day - start_day): # don't include last hour as it may not be a full hour for j in range(0, int(end_hour) - int(start_hour)): carbon_intensity_adj = np.append( carbon_intensity_adj, np.full( (n_per_hour, 1), emissions_data.iloc[start_index + j][ei_varname], ), ) else: for j in range(0, 24 - int(start_hour)): carbon_intensity_adj = np.append( carbon_intensity_adj, np.full( (n_per_hour, 1), emissions_data.iloc[start_index + j][ei_varname], ), ) # reset start index to first hour of the month start_hour = 0 if no_day_var: start_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[MONTH_VARNAME] == start_month) ] .idxmax() .iloc[0] ) else: start_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[DAY_VARNAME] == start_day) & (emissions_data[MONTH_VARNAME] == start_month) ] .idxmax() .iloc[0] ) # if we went into a new month, process that second month if rollover: end_hour = old_end_hour for i in range(old_end_day): # reset start index to first hour of the month # can assume start hour is zero since we are rolling over start_hour = 0 if no_day_var: start_index = emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[MONTH_VARNAME] == end_month) ].idxmax()[0] else: start_index = emissions_data.loc[ (emissions_data[HOUR_VARNAME] == start_hour) & (emissions_data[DAY_VARNAME] == start_day) & (emissions_data[MONTH_VARNAME] == end_month) ].idxmax()[0] if i == int(old_end_day - 1): # don't include last hour as it may not be a full hour for j in range(0, int(end_hour)): carbon_intensity_adj = np.append( carbon_intensity_adj, np.full( (n_per_hour, 1), emissions_data.iloc[start_index + j][ei_varname], ), ) else: for j in range(0, 24): carbon_intensity_adj = np.append( carbon_intensity_adj, np.full( (n_per_hour, 1), emissions_data.iloc[start_index + j][ei_varname], ), ) # add in remainder of last hour leftover = (ntsteps - num_first_min) % n_per_hour if leftover == 0: leftover = n_per_hour if no_day_var: end_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == end_hour) & (emissions_data[MONTH_VARNAME] == end_month) ] .idxmax() .iloc[0] ) else: end_index = ( emissions_data.loc[ (emissions_data[HOUR_VARNAME] == end_hour) & (emissions_data[DAY_VARNAME] == end_day) & (emissions_data[MONTH_VARNAME] == end_month) ] .idxmax() .iloc[0] ) carbon_intensity_adj = np.append( carbon_intensity_adj, np.full((leftover, 1), emissions_data.iloc[end_index][ei_varname]), ) # convert from kg/MWh to kg/kWh carbon_intensity_adj = (carbon_intensity_adj * emissions_units).to(u.kg / u.kWh) return carbon_intensity_adj